
A GA Approach to the Definition of Regulatory
Signals in Genomic Sequences

Giancarlo Mauri, Roberto Mosca, and Giulio Pavesi

Bioinformatics and Natural Computing Group
University of Milano–Bicocca

mauri,roberto.mosca,pavesi@disco.unimib.it

Abstract. One of the main challenges in modern biology and genome
research is to understand the complex mechanisms that regulate gene
expression. Being able to tell when, why, and how one or more genes
are activated could provide information of inestimable value for the un-
derstanding of the mechanisms of life. The wealth of genomic data now
available opens new opportunities to researchers. We present how a me-
thod based on genetic algorithms has been applied to the characteriza-
tion of two regulatory signals in DNA sequences, that help the cellular
apparatus to locate the beginning of a gene along the genome, and to
start its transcription. The signals have been derived from the analysis
of a large number of genomic sequences. Comparisons with related work
show that our method presents different improvements, both from the
computational viewpoint, and in the biological relevance of the results
obtained.

1 Introduction

One of the main challenges in modern biology in general, and in the analysis
of genome data in particular, is to understand the complex mechanisms that
regulate the expression (i.e. the activation) of the genes of a given organism. The
expression of a gene starts when the corresponding region in the double–stranded
DNA sequence is transcribed into a single stranded RNA sequence, that later on
is translated into the protein encoded by the gene (see Fig. 1). At any given time,
not all the genes present in the genome of a given organism are expressed, but
only a subset of them: this accounts for example for cell differentiation, that is,
the genes that are active in a neural cell are different from those active, say, in a
muscle cell. Moreover, genetic diseases are often caused by alterations occurring
not within the genes themselves, but in the apparatus governing their activation,
thus leading to anomalous expression levels. Transcription is initiated when one
or more dedicated molecules called transcription factors (TFs) (that are proteins
in turn encoded by some genes in the genome) bind to the DNA region adjacent
to the gene (region called promoter of the gene), causing the double–strand to
open and thus allowing the transcription of the gene. In some cases, the binding
of a TF has the opposite effect, blocking transcription. Each TF recognizes a set
of specific targets along the sequence, that is, short nucleotide fragments it can
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Fig. 1. Gene expression: from DNA to RNA to protein.

bind to, called binding sites. Binding sites thus function as regulatory signals in
the genome.

Since the experimental characterization and identification of the binding sites
of a given TF is a long and painstaking work, the huge amount of genomic
data now available to researchers provides a invaluable source of information for
shedding further light on this process. If we identify in the promoter of a gene
known TF binding sites, we may better understand by whom, and when a gene
is activated. Unfortunately, also the computational description and discovery of
the binding sites of a given TF is far from being an easy task. The main difficulty
lies in the very fact that each TF does not recognize a single binding site, but a
set of them, that, although similar, differ in their nucleotide composition. This
set is usually referred to as signal or motif.

1.1 TATA Box and CAP Binding Sites

Usually, each TF influences a relatively small number of organism–specific genes.
However, it has been experimentally observed that in virtually every eukaryotic
organism a large number of genes present two characteristic signals located in
the proximity of the point of transcription initiation (transcription start site,
TSS). The first one, called TATA box, is located along the DNA double helix
about 25-30 pairs of nucleotides (base pairs, bp) before (upstream of) the TSS.
Its name derives from the fact that when it was discovered the majority of its
instances contained the stretch of nucleotides TATA. The TATA box is bound
by a large complex of some 50 different proteins, including Transcription Fac-
tor IID (TFIID) – a complex of the TATA-binding protein (TBP, which is the
part of the molecule that binds the TATA box) and 14 other proteins – and
Transcription Factor IIB (TFIIB). The CAP signal (also called Initiator, or Inr)
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instead straddles the TSS, and often cooperates with the TATA box in starting
the transcription of the gene. There is significant experimental evidence that
also this signal is bound by Transcription Factor IID (TFIID) [1]. While most
of the regulatory signals are spread at different positions in genome regions ad-
jacent to genes, both the TATA and CAP motifs have instead a very precise
location, perhaps with the purpose of directing the transcription apparatus to
the right spot along the DNA sequence, signalling where exactly the gene begins
and transcription has to start. While largely present, these two signals are not
ubiquitous: in every organism, some genes contain both the signals, some either
one, and some neither of them.

Giving a precise characterization of these two signals, as well as a classifica-
tion of genes according to which signal they are regulated by, could thus provide
substantial information on a basic mechanism for gene expression, present vir-
tually in every organism.

2 Describing Binding Sites

The computational characterization of regulatory signals in genomic sequences
is usually composed by two different steps. First, we need a method to describe
a signal, that is, to represent the set of valid binding sites for a given TF.
One possible way is to describe them with a frequency matrix, that is built as
follows. Let BS be a set of DNA fragments (all having the same length m) that
a transcription factor is known to bind. Since all the fragments have the same
length we can align them obtaining m columns. Let us consider the first column,
containing the first nucleotide of each fragment. We can count the number of
times each nucleotide is present in the column, and compute its frequency. The
same operation can be performed for the other columns. In this way, a 4 × m
matrix P can be built, where the element P(i, j) is the frequency of nucleotide i
(i ∈ {A, C, G, T}) in the j–th column of the alignment:

P(i, j) =
ni,j

N
(1)

where ni,j is the number of times nucleotide i is found in the j–th position of the
fragments considered, and N is the overall number of binding sites used. Given a
set of promoter sequences of genes known (or suspected) to be regulated by the
same transcription factor, the problem of finding its binding sites can be defined
as the problem of finding the best frequency matrix. The basic idea is to find
the matrix whose frequencies differ most from those that would be obtained by
putting together random fragments from the sequences. Different measures for
this task have been proposed so far, with some success [2,3].

Then, the frequency matrix can be used to determine whether a given DNA
fragment can be considered a candidate binding site for the corresponding TF.
In fact, given a frequency matrix P describing a signal, and a generic fragment
Sf of length m the probability of the fragment to be a binding site for the
corresponding TF can be estimated by

Pmatch(Sf) =
m∏

j=1

P(Sf
j , j) (2)
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where Sf
j is the j-th nucleotide of Sf . Fragment Sf is a said to be a binding site

when Pmatch(Sf) is greater than the probability with which Sf appears in the
genome:

Pbg(Sf) =
m∏

j=1

bSf
j

(3)

where bi is the frequency with which nucleotide i appears in the genome. The
bi values can be estimated for example by considering the frequency of each
nucleotide in the sequence examined, or, since these data are now available, in
the whole genome the sequence considered belongs to.

Stated in another way, a fragment Sf can be suspected to be a binding site
if

Pmatch(Sf)
Pbg(Sf)

=
m∏

j=1

P(Sf
j , j)

bSf
j

> 1 ⇔ log
Pmatch(Sf)
Pbg(Sf)

=
m∑

j=1

log
P(Sf

j , j)
bSf

j

> 0 (4)

so to have negative score for fragments that are not bound by the TF. That
is, we evaluate the probability of a sequence fragment to be bound by the TF
described by matrix P by checking whether it fits the description of the ma-
trix (Pmatch(Sf)), and by comparing this result with the expected frequency
(Pbg(Sf)) of the fragment in the genome.

Given a sequence S of arbitrary length L > m we can say that the signal
characterized by the frequency matrix P occurs at position t in the sequence
if the fragment of length m starting at position t yields a positive value in the
above equation.

Nearly all the methods proposed so far for the discovery of signals in genomic
sequences are position–independent, that is, do not make any assumption on the
location of binding sites along the input sequences. Moreover, they require all (or
most of) the sequences studied to contain an instance of a binding site. In our
case, instead, the position of the binding sites is known in advance, making the
problem somewhat easier. This advantage, however, is balanced by the fact that
while general case methods work on a set of pre–selected sequences, most of which
supposedly share binding sites for the same (unknown) TF, in the case of the
TATA and CAP signals we cannot choose the sequences to examine beforehand,
but we have to work on virtually every gene promoter sequence available. Thus,
the problem can be recast as choosing a subset of the promoters, and using
fragments located in their TATA box and CAP positions to build a frequency
matrix. Also, we have to define a suitable function to evaluate the best matrix,
that is, the one providing the best partition between sequences containing the
signals and those that do not contain it.

Matrices describing the TATA and CAP signals have been first characterized
by Bucher in a seminal work in the late ’80s [4], and are still used by researchers
today. The method used started from two initial matrices, that were optimized
using a local search technique. The datasets analyzed, however, composed by the
sequences available at the time, were relatively small. Moreover, the fact that
the method started from an initial matrix derived from human inspection of the
data, inevitably skewed the results according to the starting point (basically, it
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had been observed that the TATA box contained the fragment TATAA, while the
CAP motif started with CA). Thus, in this work our aim was to see whether the
results obtained with a much larger dataset were consistent with the previous
ones, and at the same time avoiding any preliminary constraint for the matrix.

In the following, we first introduce a formalization of the problem. Then,
we present the genetic algorithm we used for the optimization of the scoring
function used to evaluate candidate matrices. Finally, we compare our results
with previous characterizations of the same signals.

3 The Problem

First of all, few variables must be introduced for the formalization of the problem:

1. DS =
{
S1, S2, . . . , Sn

}
is the dataset composed by n sequences Si of length

L. Every sequence starts at position p0 and ends at positon pf , measured
with respect to the TSS. Usually p0 < 0, and pf > 0, that is, each sequence
encompasses the TSS of a different gene.

2. s̄ is the position of the signal with respect to the TSS (for example −2 for
the CAP signal).

Since we already know the position s̄ of the binding site under investigation,
the problem can be defined as finding a partition of the sequences in two subsets.
Let us suppose that a particular signal of length m starts at position s̄. Consider
the set of fragments B =

{
Si

s̄S
i
s̄+1 . . . Si

s̄+m−1|Si ∈ DS
}

consisting of all the
fragments of length m starting at position s̄ in all the sequences belonging to
the dataset. In general not all of them will be binding sites. Let us suppose that
just a subset S̄ of the sequences in DS contains the signal. Then, considering
BS̄ =

{
Si

s̄S
i
s̄+1 . . . Si

s̄+m−1 ∈ B|Si ∈ S̄
}

it is possible to build a frequency matrix
from the subset BS̄ of fragments. The fragments used for this purpose are all the
substrings of length m starting at position s̄ in the sequences belonging to the
subset S̄.

Once a matrix has been built we need to define a score value for it. Different
approaches have been introduced so far, including information content, MAP
(Maximum A posteriori Probability) score and other approaches related to the
sensitivity and specificity of the matrix [2,3,5,6,7]. Here, instead, we defined the
scoring function in order to reflect also the fact that the signals we are trying to
describe are position specific. Thus, they should not appear elsewhere along the
sequence, so not to confuse the TF that binds them. In other words, we want
the probability of the fragments in the signal position to be a binding site to be
higher than the probability associated with all the fragments of the sequences in
other positions. We associate positive scores to the fragments appearing in the
correct position in the sequences selected:

POS(S̄) =

∑
Si∈DS

SP(Si, s̄)
n

(5)
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where SP(Si, s̄) is the score of the fragment of length m starting at position s̄
in sequence Si defined in (4) as

SP(Si, s̄) =
m∑

j=1

log
P(Si

s̄+j−1, j)
bSi

s̄+j−1

. (6)

Conversely, we associate a negative score with the fragments appearing in
the other positions, that is, we want as less instances of the signal as possible to
appear in wrong positions in the sequences selected:

NEG(S̄) =

∑
Si∈DS

∑po+L−m
j=p0,j �=s̄ SP(Si, j)

n (L − m)
. (7)

Thus, the score associated with subset S̄ and the corresponding frequency matrix
is given by the difference between (5) and (7)

SP(S̄) = POS(S̄) − NEG(S̄) . (8)

According to this score measure, the best matrix will be the one providing the
largest difference between the occurrences of the signal in the position selected
(s̄) and its occurrence elsewhere in the sequences. The greater is the difference
between the two terms and the more selective we can consider the matrix de-
scribing the binding site in the position under consideration. The goal is to find
the subset S∗ leading to the maximum score.

S∗ = arg max
S̄∈P(DS)

{
SPS̄

(S̄)
}

. (9)

where PS̄ is the frequency matrix calculated from the subset S̄ and P(DS) is the
power-set of DS.

4 The Genetic Algorithm

For the solution of the problem we employed a genetic algorithm. For this pur-
pose, two things must be provided: a method to encode an instance of the pro-
blem and a fitness function for the genome itself. A very simple solution is to
use a binary string genome whose length equals the number n of sequences in
the dataset. Given a genome string g the variable gi indicates the i-th bit in the
string. If gi = 1 then the i-th sequence Si in the dataset is included in the subset
S̄ of the positive sequences, otherwise it is not included. The fitness evaluation
for each genome is done in the following way:

1 Given a genome g, derive the frequency matrix PS̄ from the subset of se-
quences S̄ =

{
Si ∈ DS|gi = 1

}
.

2 Compute the score SPS̄
(S̄). Negative scores are truncated to 0.

For the implementation of the GA we used the Galib library [8]. We employed
one point crossovers with probability pc to every couple of individuals during the
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evolution step. The mutation operator flips one bit in a genome with a probability
pm. Parent genomes are selected with a roulette wheel scheme, then mating
and mutation are applied. The offspring genomes completely replace the parent
population. The fitness of each individual was obtained from the score value
with a linear scaling system as described in [9]. Different numbers of evolution
steps and termination criteria have been tried. Usually no improvements on the
fitness of the best individual were obtained after 20000 steps.

On the best genome output by the algorithm we also applied a local opti-
mization procedure. For each sequence in the dataset, this procedure tries to
perform either of the following actions:

1. if the sequence was selected by the GA for the matrix computation, it tries
to exclude it;

2. if the sequence was not selected by the GA, it tries to include it.

If the change increases the score, then it is accepted, otherwise it is rejected and
a new sequence is processed. This step is repeated until no further improvement
can be made to the score.

Bucher’s approach, even with some differences in the scoring function, per-
formed, instead, just this procedure, starting from fragments that began with
CA for the CAP signal and TATAA for the TATA box.

5 Results

Our method has been applied to three different datasets retrieved from two da-
tabases of sequences freely accessible on the web. The first one is the Eukaryotic
Promoter Database (http://www.epd.isb-sib.ch/, [10]), a database of promo-
ter sequences belonging to eukaryotic organisms. Each of these sequences belongs
to a different gene, encompassing the exact point of transcription initiation. From
the release 74 of this database we retrieved sequences belonging to 2199 genes of
vertebrate organisms (EPD Vertebrates) 1796 of which were human sequences
(EPD Homo Sapiens). It can be clearly seen how this is just a small subset of
all the thousands and thousands of genes now available. However, in most of the
cases the exact location along the genome of the TSS is not known. The EPD
contains promoter sequences of genes where at least one TSS has been deter-
mined experimentally. An analogous species–specific database is the Drosophila
Core Promoter Database (DCPD, http://www-biology.ucsd.edui
/labs/Kadonaga/DCPD.htm, [11]) which contains several promoters belonging
to the genome of the fruit fly (Drosophila melanogaster). Sequences taken from
EPD were 101 nucleotides long starting from position -50 with respect to the
TSS. From DCPD we retrieved 205 gene sequences, starting at position -47 and
92 nucleotides long. We performed our analysis on all the EPD promoters of
vertebrates, and then on human promoters only. The fruit fly dataset has been
used to validate the results, since on these sequences the occurrences of CAP
and TATA box in each have been verified experimentally. In all the cases, some
sequences contained both signals, some either of them, and some none. On each
dataset we ran the genetic algorithm in order to obtain the best matrix for the
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Table 1. Parameters of the genetic algorithm used in the experiments.

Parameter Value

Population 500
Generations 20000
Crossover prob. (pc) 0.9
Mutation prob. (pm) 0.04
s̄ -2 (CAP)

-30 (TATA-box)
Matrix length m 6 (CAP)

8 (TATA-box)

CAP signal (choosing position -2 with length 6) and the TATA box. While the
TATA box is usually found in a random position between −36 and −24, we fixed
position −30 (matrix of length 8), which has the highest frequency of occurrence.
The parameters used in the GA are shown in Table 1. The application of the lo-
cal optimization procedure after different runs of the GA on the various datasets
converged to virtually the same matrix in each case. The signals obtained can
be thus trusted to be strong (perhaps global) optima for the scoring function
employed.

5.1 The CAP Signal

The CAP signal matrices computed by the genetic algorithm on the sequences
of the first dataset (EPD Vertebrates and the Homo Sapiens subset) are shown
in Table 2. As shown in the table, the local optimization procedure is able to
“clean” the frequencies in the matrix, getting a more conserved distribution of
nucleotides. Indeed, after the local optimization we can observe that the CAP
signal defined over the EPD datasets has either a C or a T in position −1 (just
before the TSS), and either an A or a G in position 0. No A is present in position
−2 and no G in position 2. The former characterization on eukaryotes of the
CAP signal of Bucher [4], where the matrix length was fixed to 8 nucleotides, is
shown in Table 3. It is the result of a refinement of an initial matrix built using
fragments containing a C in position −1 and an A in position 0. This matrix is
still reported in EPD as the reference matrix for the description of this signal,
and for this reason we compared the matrix obtained with our method with this
one.

The final matrix maintains this strict constraint of a CA dinucleotide at po-
sition −1 (clearly determined by the initial choice), while our matrix shows also
the presence of possible CG, TA, TG dinucleotides. The biological feasibility of this
result is supported by the fact that, in the case of fruit fly sequences (see Table
4), the matrix shows the possible presence of CA and TA dinucleotides at position
−1, a fact that is consistent with the results obtained experimentally by Kutach
and Kadonaga in [11].

In Table 5 we show a comparison between the scores of the matrices obtai-
ned with our technique on the three different datasets and score of the matrix
obtained by Bucher. For every matrix the score is calculated with the method
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Table 2. CAP signal frequency matrix obtained with the genetic algorithm on the
EPD datasets.

-2 -1 0 1 2 3 -2 -1 0 1 2 3

EPD Vertebrates EPD Homo Sapiens

Non optimized Non optimized

A 0.069 0.000 0.608 0.139 0.226 0.184 0.017 0.000 0.623 0.136 0.259 0.174
C 0.345 0.685 0.129 0.223 0.240 0.252 0.356 0.712 0.092 0.189 0.234 0.229
G 0.294 0.009 0.263 0.301 0.151 0.278 0.327 0.000 0.285 0.341 0.121 0.293
T 0.293 0.305 0.000 0.337 0.383 0.286 0.300 0.288 0.000 0.334 0.387 0.303

Optimized Optimized

A 0.001 0.000 0.738 0.144 0.304 0.177 0.000 0.000 0.714 0.119 0.328 0.167
C 0.366 0.728 0.000 0.247 0.253 0.231 0.374 0.725 0.000 0.227 0.225 0.229
G 0.310 0.000 0.262 0.360 0.000 0.323 0.311 0.000 0.286 0.385 0.000 0.332
T 0.323 0.272 0.000 0.279 0.444 0.270 0.315 0.275 0.000 0.270 0.447 0.271

Table 3. CAP signal obtained by Bucher in [4].

-2 -1 0 1 2 3 4 5

A 0.162 0.000 0.950 0.086 0.254 0.221 0.149 0.165
C 0.158 1.000 0.000 0.267 0.314 0.281 0.281 0.317
G 0.228 0.000 0.000 0.383 0.000 0.241 0.241 0.185
T 0.452 0.000 0.050 0.264 0.432 0.330 0.330 0.333

described in section 2. Even if the latter is 2 nt longer than ours, its score is al-
ways lower. Moreover, in our description the signal appears in a greater number
of sequences, at the same time maintaining a higher specificity for the position
considered.

5.2 The TATA-Box Signal

The TATA-box signal has been searched in position −30 with length 8. In fact,
this signal usually appears in the range between −36 and −24, but shows a high
preference for position −30. In this case the score function has been modified,
using for the positive term of (5), the average score over the range [−36,−24]
instead of position −30 alone. The negative term was taken to be the average

Table 4. CAP signal obtained with the genetic algorithm on the DCPD dataset.

-2 -1 0 1 2 3

A 0.185 0.000 1.000 0.000 0.000 0.228
C 0.000 0.772 0.000 0.130 0.185 0.326
G 0.130 0.000 0.000 0.565 0.000 0.000
T 0.685 0.228 0.000 0.304 0.815 0.446
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Table 5. Comparison between the score of the frequency matrix obtained by Bucher
and the matrices computed using genetic algorithms on different datasets. Column
Seqs. shows the number of sequences containing the signal.

Signal Dataset # of seqs. Bucher GA with opt.
Score Seqs. Score Seqs

EPD Vertebrates 2199 3.364 581 5.001 917
CAP EPD Homo Sapiens 1796 3.469 489 5.447 790

DCPD 205 7.497 114 9.106 102

EPD Vertebrates 2199 2.044 708 3.111 772
TATA-box EPD Homo Sapiens 1796 1.427 406 2.048 495

DCPD 205 1.724 96 1.996 126

score in all the other positions. The results are shown in Table 6. A comparison
of the scores obtained by our matrices and the one defined by Bucher (see Table
7) can be found in Table 5. Here the score is always computed on the range
[−36,−24]. As the table shows, the matrix we obtained has always the greater
score and describes a signal present in a higher number of sequences. By looking
at the nucleotide frequencies, we can see that the matrices describe a sequence
of A and T rich positions, with no definite preference for either nucleotide as in
previous characterizations. Even if the absence of the usual TATAA sequence might
look surprising, this result is consistent with the finding that the TBP (the TF
part that recognizes the TATA box) recognizes the minor groove of DNA, where
protein-DNA interactions are typically influenced by A/T-content, but not by
the specific nucleotide sequence [12,13]. To our knowledge, this is the first time
where a computational method was able to reproduce this result, without the
canonical TATAA stretch in the signal. Anyway, further experimental investigation
is needed, in order to establish whether the blurring of the TATAA motif depends
on overlapping of occurrences of TATAA fragments in the surrounding positions,
or actually describes an effective binding site for the TBP that is not strictly
related to the usual consensus sequence.

6 Conclusions

In this paper we presented a method for the characterization of regulatory sig-
nals in genomic sequences, and we have shown its application to two important
examples, the TATA box and CAP signals. The signals found have proved to
be consistent with those described experimentally, as we have shown in the case
of fruit fly signals. While more general than descriptions proposed in the past,
our frequency matrices seem however to be able to characterize with better
specificity the respective signals. The matrices obtained can be used to further
investigate the mechanism of transcription regulation. For example, most of the
genes usually present more than one possible point of transcription initiation.
While on the dataset used for its construction (where the experimentally map-
ped TSSs had in many cases alternatives in the same sequence) the signal was
present in less than half of the sequences, when we applied our CAP matrix to a
selected set of gene sequences experimentally known to have a strong preference
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Table 6. TATA-box signal obtained with the genetic algorithm on the EPD and DCPD
datasets after the local optimization procedure.

0 1 2 3 4 5 6 7

EPD Vertebrates

A 0.372 0.471 0.538 0.640 0.794 0.643 0.551 0.225
C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.163
G 0.135 0.000 0.000 0.000 0.000 0.151 0.274 0.465
T 0.492 0.529 0.462 0.360 0.206 0.206 0.175 0.148

EPD Homo Sapiens

A 0.362 0.436 0.521 0.612 0.793 0.649 0.553 0.239
C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.133
G 0.154 0.000 0.000 0.000 0.000 0.149 0.287 0.489
T 0.484 0.564 0.479 0.388 0.207 0.202 0.160 0.138

DCPD

A 0.600 0.425 0.725 0.725 0.775 0.550 0.325 0.250
C 0.000 0.000 0.000 0.000 0.000 0.000 0.250 0.400
G 0.000 0.000 0.000 0.000 0.000 0.325 0.425 0.350
T 0.400 0.575 0.275 0.275 0.225 0.125 0.000 0.000

Table 7. TATA-box signal obtained by Bucher in [4].

-3 -2 -1 0 1 2 3 4 5 6 7 8 9 10 11

A 0.157 0.041 0.905 0.008 0.910 0.689 0.925 0.571 0.398 0.144 0.213 0.211 0.211 0.175 0.198
C 0.373 0.118 0.000 0.026 0.000 0.000 0.008 0.005 0.113 0.347 0.378 0.326 0.303 0.275 0.260
G 0.391 0.046 0.005 0.005 0.013 0.000 0.051 0.113 0.404 0.386 0.329 0.329 0.329 0.357 0.360
T 0.080 0.794 0.090 0.961 0.077 0.311 0.015 0.311 0.085 0.123 0.080 0.134 0.157 0.193 0.183

for a single TSS, the percentage of sequences having the signal in the correct
position rose to about 70%. Nowadays genomic data are often flanked by tran-
scriptome analysis projects describing for each gene how many TSSs have been
detected, the frequency with which each is used, as well as their precise loca-
tion [14]. Therefore, an interesting study would be to further investigate possible
correlations between the presence of TATA and CAP signals and the most fre-
quently used TSSs of a gene. From the computational point of view, the main
advantage of this method is the fact that, differently from previous approaches
to the same problem, it does not make any prior assumption about the signal
to be characterized, and also takes advantage of the specific localization of the
signals considered. Moreover, in order to apply our method it is not necessary
to select in advance a set of sequences containing the signal. In fact, the method
finds the best partition of the dataset between sequences containing and non
containing the signal. This distinction is done by computing the frequency ma-
trix that gives the best score in the predefined signal position while penalizing
all the other positions.
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10. Praz, V., Périer, R., Bonnard, C., Bucher, P.: The eukaryotic promoter database,

EPD: new entry types and links to gene expression data. Nucleic Acids Res. 30
(2002) 322–324

11. Kutach, A., Kadonaga, J.: The downstream promoter element DPE appears to
be as widely used as the TATA box in Drosophila core promoters. Mol. Cell Biol.
20 (2000) 4754–64

12. Kim, J.L., Nikolov, D.B., Burley, S.I.: Co-crystal structure of TBP recognizing
the minor groove of a TATA element. Nature 365 (1993) 520–527

13. Lo, K., Smale, S.T.: Generality of a functional initiator consensus sequence. Gene
182 (1996) 13–22

14. Okazaki, Y., Furuno, M., Kasukawa, T., et al: Analysis of the mouse transcriptome
based on functional annotation of 60,770 full-length cDNAs. Nature 420 (2000)
563–573


	Introduction
	TATA Box and CAP Binding Sites

	Describing Binding Sites
	The Problem
	The Genetic Algorithm
	Results
	The CAP Signal
	The TATA-Box Signal

	Conclusions

